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Abstract

Human noroviruses (HuNoV) are the leading cause of gastrointestinal illness and environmental 

monitoring is crucial to prevent HuNoV outbreaks. The recent development of a HuNoV cell 

culture assay in human intestinal enteroids (HIEs) has enabled detection of infectious HuNoV. 

However, this complex approach requires adaptation of HIEs to facilitate HuNoV replication 

from environmental matrixes. Integrating data from 200 experiments, we examined six variables: 

HIE age, HIE basement membrane compounds (BMC), HuNoV inoculum processing, HuNoV 

inoculum volume, treatment of data below limit of detection (LOD), and cutoff criteria for 

determining positive HuNoV growth. We infected HIEs with HuNoV GII.4 Sydney positive 

stool and determined 1.4 × 103 genome equivalents per HIE well were required for HuNoV 

replication. HIE age had minimal effect on assay outcomes. LOD replacement and cutoff affected 

data interpretation, with lower values resulting in higher estimated HuNoV detection. Higher 

inoculum volumes lead to minimal decreases in HuNoV growth, with an optimal volume of 250uL 

facilitating capture of low concentrations of HuNoVs present in environmental isolates. Processing 

of HuNoV inoculum is valuable for disinfection studies and concentrating samples but is not 

necessary for all HIE applications. This work enhances the HuNoV HIE cell culture approach 

for environmental monitoring. Future HIE research should report cell age as days of growth and 

should clearly describe BMC choice, LOD handling, and positive cutoff.
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Introduction

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis globally and 

cause approximately 200,000 deaths and $64 billion in economic losses each year (Ahmed 

et al., 2014; Bartsch et al., 2016). Due to high transmissibility and persistence, HuNoVs in 
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the environment pose a significant infection risk which makes accurate monitoring crucial 

for prevention and control (Kraay et al., 2018; Lopman et al., 2012).

Traditionally, HuNoVs resisted culture efforts (Duizer et al., 2004) and could only be 

detected with molecular methods that measure viral RNA (Hamza et al., 2011; Knight et 

al., 2013, 2016; Moore et al., 2015; Stals et al., 2012). These approaches frequently use 

reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and values can be 

converted to a measure of HuNoV genome equivalents (GE) using an internal standard 

with a known amount of RNA (Gentry-Shields & Stewart, 2013; Yu et al., 2016). Though 

molecular approaches are fast, sensitive, and easily quantifiable, the detection of HuNoV 

RNA is not necessarily indicative of infectious virus (Dunkin et al., 2017a; Weng et al., 

2018). Additionally, RT-qPCR assays can be subject to reaction inhibition as a result of 

organic matter present in samples (Laverick et al., 2004).

The inability to measure infectious HuNoV virions can hamper public health interventions 

as the relationship between HuNoVs detected via RT-qPCR and infectivity in a human host 

is not clear (Moore et al., 2015). Several approaches to improve nucleic acid amplification 

correlation with viral infectivity have been reported (Wolf et al., 2009; Nuanualsuwan & 

Cliver, 2002; D. Li et al., 2011; Pecson et al., 2009; Topping et al., 2009). A reproducible 

cell culture infectivity model remains the definitive way to confirm the presence of 

infectious HuNoV (Knight et al., 2013; Moore et al., 2015). Identifying infectious HuNoV 

by cell culture can be a direct correlation to human health outcomes. An infectivity model 

presents the opportunity to develop more accurate risk assessments, predict health outcomes 

based on monitoring data, and conduct viral inactivation experiments that better capture true 

reduction of infectivity (Li et al., 2012; Monteiro & Santos, 2018).

An approach that has been successfully used to cultivate HuNoV is human intestinal 

enteroid (HIE) cell culture (Ettayebi et al., , 2016, 2021). HIEs, also termed “mini-

intestines,” are three-dimensional polarized structures that recapitulate the human intestinal 

epithelium (Foulke-Abel et al., 2014; Zachos et al., 2016). For growth of HuNoV, crypt 

cells are isolated from a human jejunum biopsy to generate jejunal HIEs as the second 

section of the small intestine is considered the main site of HuNoV replication (Ettayebi 

et al., 2016). HIEs require the addition of growth factors, including Wnt3a, R-spondin, and 

Noggin, to stimulate the development of crypt cells into multi-cellular spheroids that contain 

the major cell types found in the human intestinal epithelium (Foulke-Abel et al., 2014; Sato 

et al., 2011). HIEs mimic major aspects of normal intestinal epithelial physiology, including 

electron transport and cell lifespan, and demonstrate key pathophysiological responses to 

pathogen infection (Saxena et al., 2016; Zachos et al., 2016).

HIEs are maintained as 3D cultures prior to processing the HIEs for infection with HuNoV 

(Ettayebi et al., 2016; Zou et al., 2019). Preparation for infection involves disrupting the 

HIEs into a single cell suspension, subsequent seeding of cells as monolayers in 96-well 

tissue culture plates, and inducing differentiation by removal of Wnt3a, which leads to the 

development of mature absorptive enterocytes and secretory cells (Ettayebi et al., 2016; 

Zachos et al., 2016; Zou et al., 2019). These differentiated HIE monolayers can then be 

infected with HuNoV (Ettayebi et al., 2016). The HIE method shows promise in bridging the 
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gap between measurements of RNA and the presence of actively replicating HuNoV virions 

by mimicking the physiological processes of the gut (Costantini et al., 2018; Estes et al., 

2019; Ettayebi et al., 2016).

In HIEs, HuNoV growth is measured as the fold increase in HuNoV GE between 1 and 

72 h post infection (hpi) (Ettayebi et al., 2016). A cutoff value for fold-increase in GE can 

then be set to classify samples as positive or negative for replication of infectious HuNoV. 

The ability to culture HuNoV in vitro has important implications for vaccine research, 

clinical detection, and testing inactivation methods (Alvarado et al., 2018; Cates et al., 

2020; Costantini et al., 2018; Davis et al., 2020; Ettayebi et al., 2021; Ford-Siltz et al., 

2020; Foulke-Abel et al., 2016; Haga et al., 2020; Koromyslova et al., 2019; Randazzo 

et al., 2020). An important application of HIE cell culture is growing HuNoV recovered 

from food, water, air, and fomites. The isolation and detection of HuNoV RNA recovered 

from environmental isolates is frequently used to monitor cleaning efficacy and determine 

potential interventions that are needed to protect human health (Boxman et al., 2011; Lun 

et al., 2018; Morter et al., 2011; Stals et al., 2013). However, environmental monitoring has 

different technical needs than other applications of the HIE system (Haramoto et al., 2018; 

Ibfelt et al., 2016; Stals et al., 2012; Tung-Thompson et al., 2017). First, quantitative values 

for infectious HuNoV need to be reproducible and meaningful. In monitoring applications, 

infectious HuNoV detection must be reflective of input HuNoV and samples with similar 

input should yield similar measures of infectious HuNoV (Laverick et al., 2004; Stals 

et al., 2013). Second, qualitative cutoffs to determine positive versus negative samples 

must be robust and consistent. In monitoring, qualitative measures of presence/absence 

are frequently used and these measures must accurately reflect the underlying presence of 

HuNoV (Haramoto et al., 2018; Stals et al., 2013). And third, methodologies should be 

standardized to ensure comparable values across research groups (Klymus et al., 2019). 

Choices of reagents, handling of HIE cells and HuNoV inoculum, and data interpretation 

and presentation should be done in a way that allows for ease of replication and comparison 

across studies (Haramoto et al., 2018; Klymus et al., 2019).

Refining the HIE cell culture method to address the needs of environmental monitoring is 

hindered by the complexity in maintaining and infecting HIEs with HuNoV (Estes et al., 

2019; Ettayebi et al., 2021). The HuNoV HIE culture method requires numerous reagents, 

including specialized collagen matrix and growth media, multiple laborious steps, including 

manual trituration of cells, and significant financial investment (Ettayebi et al., 2021). 

Additionally, only some HuNoV genotypes and genogroups replicate successfully in HIEs, 

with reports indicating that HuNoV GII.4 shows the most successful replication (Costantini 

et al., 2018). This study reports on selected key aspects for HuNoV GII.4 Sydney cultivation 

in HIE with a focus on developing approaches for environmental samples. Parameters 

selected are not exhaustive and instead represent important, foundational variables that 

are required to move the HIE system towards environmental monitoring of HuNoV. The 

generated data were subsequently used to develop best practices for propagating infectious 

HuNoV GII.4 Sydney in HIEs.
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Methods

Figure 1 outlines the method for growing human norovirus in HIEs. We measured infectivity 

of HuNoV isolated from norovirus-positive human stool samples in HIEs using previously 

described methods (Costantini et al., 2018; Ettayebi et al., 2016). Six key experimental 

variables were addressed to examine impacts on HuNoV growth:

HIE culture variables:

1. HIE cell age

2. BMC for seeding HIE monolayers

HuNoV suspension variables:

3. Processing method for HuNoV suspensions

4. Volume of HuNoV suspension added to HIEs

Data processing variables:

5. Handling of values that fall below the limit of detection (LOD)

6. Cutoff value for determining if a sample contains infectious HuNoV

Human Norovirus Stool Samples & Processing

We tested four HuNoV GII-positive stool samples from adult and pediatric patients; samples 

were genotyped based on the capsid region (Kroneman et al., 2013) (Table 1). All samples 

were diluted to 10% in sterile phosphate-buffered saline and filtered through a 0.45 μm 

filter. A subset of the pediatric GII.4 Sydney stool sample was further processed with one 

of three methods: Vertrel XF (DuPont, Wilmington, DE); Vertrel XF plus 0.45 μm filtration; 

or Vertrel XF, 0.45 μm filtration, and sucrose cushion ultracentrifugation, as previously 

reported (Dunkin et al., 2018). Briefly, equal parts 10% stool filtrate and Vertrel XF were 

homogenized on ice and the emulsified mixture was centrifuged for 15 min at 4000 × 

g; supernatant was recovered and used as “Vertrel” labeled stool suspension. A subset of 

Vertrel suspension was then passed through a 0.45 μm filter and resulted in “Vertrel and 

filtered” stool suspensions. The highest processing step involved purification of Vertrel 

and filtered suspensions with sucrose cushion ultracentrifugation. The Vertrel and filtered 

HuNoV suspension was overlaid on a sterile-filtered 20% sucrose solution in an Ultraclear 

centrifuge tube (Beckman, Brea, CA) and centrifuged for 3 h at 95,000 × g; this process 

was repeated using an additional Vertrel and filtered HuNoV suspension before suspending 

the resulting pellet. The final suspension was defined as a “sucrose” HuNoV suspension. 

Samples were portioned and immediately stored at − 80 °C until time of testing. Portions 

were used for a maximum of three individual experiments and were limited to no more than 

three freeze–thaw cycles.

Human Intestinal Enteroid Culture

We maintained a secretor-positive jejunal HIE culture (J2 line), kindly provided by Mary 

Estes (Baylor College of Medicine, Houston, TX), as undifferentiated three-dimensional 

(3D) (i.e., spheroid) cultures. This line has been previously used to grow HuNoV and human 
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rotavirus (Ettayebi et al., 2016; Saxena et al., 2016). Human IntestiCult media (STEMCELL 

Technologies Inc., Vancouver, Canada) was used as complete media with essential growth 

factors to propagate HIEs; complete media without growth factors (CMGF-) was prepared 

as previously described (Ettayebi et al., 2016). Cultures were maintained at 37 °C in 5% 

CO2 in 24-well cell culture plates. After 7 days of growth, 3D cultures were either split 

1:2, archived in liquid nitrogen (LiN2), or dissociated to a single cell suspension and plated 

1:2 as an undifferentiated monolayer in a 96-well cell culture plate. HIE monolayers were 

seeded on Matrigel (Corning, Corning, NY) or human Collagen IV (Sigma-Aldrich, St. 

Louis, MO), and grown for 2 days in IntestiCult supplemented with 10 μmol/L Y-27632. 

Monolayers were subsequently differentiated for 5 days prior to infection with media 

prepared by Johns Hopkins Conte NIH/NIDDK Digestive Diseases Basic and Translational 

Research Core Center, as previously described (Noel et al., 2017; Saxena et al., 2016). 

Cell age was measured in terms of passage number, days of continuous growth, and length 

of time archived in LiN2. Passage number was not reflective of HIE freeze–thaw cycles. 

Days of continuous growth represent the number of days between the removal of HIEs 

from LiN2 archive and subsequent infection with virus. In some instances, propagated HIEs 

were obtained directly from other laboratories within Johns Hopkins University. In these 

instances, due to the lack of propagation history, receipt of HIE cultures by our lab personnel 

were considered day 1 of growth.

Human Norovirus Infection Experiments

Confluent HIE monolayers were infected apically after 5 days of differentiation, in 

duplicate, with processed HuNoV stool suspensions supplemented with 500 μM of 

glycochenodeoxycholic acid (GCDCA; Sigma-Aldrich, St. Louis, MO). After 1 h of 

incubation at 37 °C in 5% CO2 to allow viral attachment, the supernatant was removed and 

monolayers were washed three times with CMGF-. For each set of infections, after the third 

wash, one monolayer was immediately frozen at − 80 °C and the second was grown at 37 °C 

in 5% CO2 for 72 h post infection (hpi). Following the 72-h incubation, the supernatant and 

monolayer cells were frozen at − 80 °C. We extracted RNA from 1 and 72 hpi monolayer 

cells and supernatants with the Direct-zol RNA miniprep kit (Zymo Research, Irvine, CA). 

HuNoV RNA copies were measured with RT-qPCR using the QuantiTect Probe RT-PCR 

Kit (Qiagen, Hilden, Germany) with COG2 primers and the RING2P probe targeting the 

ORF1–ORF2 junction (Kageyama et al., 2003).

In order to calculate a quantitative HuNoV GE, we developed a standard curve using in vitro 

RNA transcripts derived from plasmid pNoV/MD145, kindly provided by Michael Kulka 

(FDA, Silver Spring, MD, USA), which contained a full-length synthetic cDNA copy of a 

HuNoV GII strain (Yu et al., 2016). Based on 14 runs of seven dilutions in duplicate, the 

RT-qPCR limit of detection (LOD) was determined to be 44.3 viral GE/5 μL, as calculated 

using the discreet threshold method (Klymus et al., 2019).

Statistical Analyses

Statistical analyses were performed in Stata 13 and R 3.6.1 (StataCorp, 2013; R Core Team, 

2019). We use the term HuNoV growth to refer to the fold increase in HuNoV GE between 1 

and 72 hpi in HIEs. Unless otherwise stated, samples were considered negative for infectious 
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HuNoV if the fold increase was less than five. Values below the RT-qPCR LOD (44.3 GE/5 

μL) were replaced with the LOD value unless stated otherwise. In some analyses, samples 

with values below the LOD were considered negative and replaced with zeroes, these values 

were considered “dropped.”

The Kruskal–Wallis one-way ANOVA on ranks test (KW) was used to examine the 

relationship between single input variables and fold increase as a continuous outcome; the 

Kruskal–Wallis test was chosen as the data were non-parametric. Age of HIEs was treated 

as a categorical variable due to the pseudo-continuous nature of age values. HIE passage 

numbers were aggregated to categories of 20–29, 30–39, 40–49, and 50–59; HIE days of 

growth were aggregated to 0–49, 50–99, 100–149, and 150–199; HIE days in archive were 

aggregated to 0–99, 100–199, 200–299, and 300–399. For many variables, we aimed to 

control for input virus when measuring statistical differences. To achieve this, significance 

was tested with binomial logistic regression (BR) for binary outcomes and linear regression 

(LR) for continuous outcomes. All continuous outcomes were log transformed prior to 

regression analysis.

Results

Selection of HuNoV Strain

We screened four 10% stool suspensions containing HuNoV to determine their ability to 

replicate in HIEs (Table 1). Two samples replicated in the HIE system—a pediatric GII.4 

Sydney and an adult GII.4–16 recombinant (data not shown). The fold increase in HuNoV 

GE between 1 and 72 hpi for the two virus strains is shown in Fig. 2. No significant 

difference was observed in increase in HuNoV at 72 hpi (KW p = 0.29). Ten of 38 GII.4–16 

recombinant experiments were positive for infectious HuNoV, while 18 of 33 GII.4 Sydney 

experiments were positive. Due to the lower detection rate of infectious norovirus in GII.4–

16 recombinant experiments, the pediatric GII.4 Sydney virus was used in all subsequent 

experiments, unless stated otherwise.

Age of HIE Cells

Three measures were used to examine the relationship between age of HIE cells and HuNoV 

GII.4 Sydney growth (Fig. 3). When controlling for input virus, HIEs at passage 40 to 49 

were associated with a 2% increase in odds of detecting HuNoV GII.4 Sydney, compared 

to passage 20–29 (BR p = 0.04); no other passage category was associated with an increase 

in detecting infectious HuNoV GII.4 Sydney (BR p values > 0.05). When HIE age was 

measured as days of growth, there was no association with detection of infectious HuNoV 

(BR p values > 0.9). Similarly, no association was observed between category of days 

archived in LiN2 and qualitative detection of infectious HuNoV GII.4 Sydney (BR p values 

> 0.05). HuNoV GII.4 Sydney growth was observed at the maximum value for all three 

measures of age: passage 58, 187 days of continuous growth, and 334 days archived in LiN2.

Basement Membrane Compound

The relationship between HuNoV GII.4 Sydney growth and HIE monolayer BMC is 

shown in Fig. 4. Fifty-four percent (75/140) of Matrigel-seeded HIE monolayers were 
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positive for infectious HuNoV, while 32% (7 of 22) of collagen experiments were positive. 

The proportion of samples positive for infectious HuNoV were not significantly different 

between the two membranes when controlling for input virus (BR p = 0.1). However, when 

controlling for input virus, HIE monolayers seeded with Matrigel had a significantly higher 

measured fold increase in HuNoV GII.4 Sydney GE between 1 and 72 hpi, compared to HIE 

monolayers seeded with Collagen IV (LR p = 0.03).

Titer of Input HuNoV

Prior to investigating the role of HuNoV GII.4 Sydney viral suspension variables in growth 

in HIEs, we measured the relationship between input HuNoV GE and measured growth for 

HIEs using 100 μL inoculation volumes of 0.45 μm filtered virus (“baseline” experiments 

denoted with gray points in Figs. 5 and 6). An increase in input HuNoV GII.4 Sydney was 

significantly associated with a higher likelihood of detecting infectious virus (BR p = 0.03) 

and with an increase in HuNoV growth as measured by fold increase (KW p = 0.03). No 

growth of HuNoV was observed at input values below 1.4 × 103 GE/well (data not shown).

HuNoV Inoculum Processing

The impact of different viral inoculum processing steps on HuNoV GII.4 Sydney growth, 

compared to baseline experiments, is shown in Fig. 5. No significant association was 

observed between proportion of samples positive for HuNoV across the three additional 

processing steps when compared to baseline (BR p > 0.3). When controlling for amount of 

input HuNoV, there was no association between HuNoV growth and processing method (LR 

p > 0.3).

HuNoV Inoculum Volume

The impact of infecting HIEs with different volumes of HuNoV GII.4 Sydney suspension 

on HuNoV growth are shown in Fig. 6. Compared to a 60% positive detection rate for 100 

μL samples (70/116), the detection rate was 50% for both 200 μL (6/12) and 250 μL (2/4) 

infections and 75% for 300 μL infections (6/8). When controlling for amount of HuNoV 

GE, HIEs inoculated with 200 μL of HuNoV stool suspension had reduced odds of positive 

detection of infectious HuNoV, compared to 100 μL (BR p = 0.009). However, volumes 

higher than 200 μL were not associated with decreased detection of HuNoV (BR p values > 

0.1).

Limit of Detection

The three methods for replacing values below the limit of detection resulted in a significant 

difference in proportion of samples positive for HuNoV GII.4 Sydney (BR p < 0.0001). 

The highest percent detection of infectious HuNoV was observed when below LOD values 

were replaced with half of the LOD (61%, 71/116), followed by replacement with the LOD 

(60%, 70/116), and then dropping values below the LOD (33%, 38/116). The fold increase 

in HuNoV GE in HIEs for positive samples across the three methods was not significantly 

different (Fig. 7, KW p = 0.37).
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Positive Fold CutOff

We examined the impact different cutoff values for fold increase in HuNoV GII.4 Sydney 

GE between 1 and 72 hpi to determine if samples contained infectious HuNoV. Three cutoff 

values were selected—greater than or equal to 1, 5 (baseline), and 10 (Fig. 8). The percent 

of samples positive for infectious HuNoV were not significantly different across the three 

cutoff values and ranged from 65% for a fold cutoff of ≥ 1 (75/116) to 57% for a fold cutoff 

of ≥ 10 (68/116) (BR p ≥ 0.3).

To examine how differences in fold cutoff may affect data interpretation, we analyzed the 

relationship between fold increase for positive samples and the amount of input virus, as this 

association is well documented in the literature. For each fold cutoff, there was a significant 

association between input HuNoV and fold increase for positive experiment as measured by 

the Kruskal—Wallis one-way ANOVA on ranks test (p values < 0.03).

Discussion and Conclusions

The ability to grow HuNoV in HIEs is a significant advancement for HuNoV research 

(Estes et al., 2019; Ettayebi et al., 2021). The HIE system enables the definitive detection 

of infectious HuNoV, which has a profound impact on vaccine research, clinical monitoring, 

and environmental detection for HuNoV (Alvarado et al., 2018; Cates et al., 2020; 

Costantini et al., 2018; Davis et al., 2020; Ettayebi et al., 2021; Ford-Siltz et al., 2020; 

Foulke-Abel et al., 2016; Haga et al., 2020; Koromyslova et al., 2019; Lin et al., 2020; 

Randazzo et al., 2020). Of particular interest is environmental monitoring applications of 

the HIE cell culture system for HuNoV. Environmental presence of HuNoV is frequently 

used to measure efficacy of interventions and assess public health risk (Boxman et al., 2011; 

Lun et al., 2018; Morter et al., 2011; Stals et al., 2013). Monitoring applications can greatly 

benefit from the integration of cell culture to detect infectious HuNoV (Baert et al., 2011). 

This would allow for more accurate predictions of health outcomes and could prevent the 

unnecessary expense of resources to treat environmental sources that may contain HuNoV 

RNA but no actively infectious HuNoV.

To this end, we sought to further develop and codify the HIE cell culture system to 

facilitate HuNoV environmental monitoring applications. Methodological details vary across 

research groups and include components of the HIE culture itself, handling of the HuNoV 

suspensions to be tested, and data processing decisions that have yet to be systematically 

evaluated (Table 2). Parameters selected represent significant methodological components 

of HuNoV cultivation in HIEs but should not be used as a comprehensive list for all 

components of the HIE system. Other parameters that were not examined in this work, but 

for which a similar study could be valuable, include growth medium and density of HIE 

cells (Ettayebi et al., 2016, 2021). We selected a subset of methodological details to examine 

the effects on qualitative and quantitative measures of infectious HuNoV and translated 

these data into a list of recommendations (Table 3). For the HIE system, qualitative 

measurements describe the number of samples considered positive for infectious HuNoV, 

while quantitative measurements reflect the increase in HuNoV GE in the HIE system, 

usually represented as fold increase.
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Prior to testing experimental variables, we tested four HuNoV-positive stool samples to 

identify the best candidate for growth in HIEs. The most successful growth was from a 

pediatric stool sample that contained HuNoV GII.4 Sydney. This is consistent with prior 

reports that GII viruses and stool from pediatric patients grow best in the HIE system 

(Costantini et al., 2018; Ettayebi et al., 2021).

HIE Culture Variables

The first HIE cell culture variable we examined was cell age. Previous work with HuNoV in 

HIEs either did not report this information or included HIE age as passage number, which 

represents the number of times a line has been split (Alvarado et al., 2018; Chan et al., 

2019; Costantini et al., 2018; Davis et al., 2020; Ettayebi et al., 2016; Ford-Siltz et al., 2020; 

Haga et al., 2020; Koromyslova et al., 2019; Lin et al., 2020; Randazzo et al., 2020). We 

analyzed HIE age data in three ways: as cell line passage number, as days of continuous 

growth in the lab prior to infection with HuNoV GII.4 Sydney, and as number of days the 

line had been archived in LiN2 (Fig. 3). We found that we were able to observe successful 

growth up to passage 58, which is significantly higher than the previous studies that report 

a maximum passage of 31 (Chan et al., 2019; Costantini et al., 2018; Lin et al., 2020). 

It is likely that HIE cell handling during archive and expansion was responsible for the 

observed improvement in HuNoV GII.4 Sydney growth at higher HIE passages, though an 

absence of full experimental details in the literature precludes robust comparisons between 

the HIE handling in this study and other published research. An increase in passage number 

was only associated with an increase in the percent of samples positive for HuNoV for 

HIEs at passage 40–49, while no relationship was found for days of continuous growth 

or days archived. This discrepancy illustrates that passage number may not be ideal as a 

standalone measure of cell age. Each passage equates to roughly one week, but passage 

number is not directly tied to any age, as cell lines can be frozen and unfrozen without 

any change in passage number. The inconsistent association between cell age and HuNoV 

replication has been observed by others where a 3 log10 difference in HuNoV replication in 

HIEs across a 4-year period was observed, but with no apparent relationship between time 

cultured and resulting HuNoV replication (Ettayebi et al., 2021). Though no association was 

found between cell age and HuNoV replication, we recommend that future work continue 

to report values of cell age as days of continuous growth (Table 3). This value provides a 

more accurate representation of cell age, when compared to passage number, and may be 

important for reproducibility and comparisons across studies.

The second HIE-associated variable we examined was the BMC used to stabilize 

monolayers seeded onto 96-well tissue culture plates. BMCs are composed of protein 

matrices that are deposited beneath epithelia and form sheets that provide mechanical 

stability and can influence cell shape and proliferation (Timpl, 1996). There is no consensus 

in the literature on choice of BMC for HIEs to cultivate HuNoV. Previous methods for 

growing HuNoV in HIEs report the use of either Human Collagen IV (Alvarado et al., 2018; 

Costantini et al., 2018; Davis et al., 2020; Koromyslova et al., 2019; Lin et al., 2020; Zou 

et al., 2019) or Corning Matrigel (Ettayebi et al., 2016; Ford-Siltz et al., 2020; Haga et 

al., 2020). We found that the two different BMCs resulted in similar qualitative measures 

of infectious HuNoV GII.4 Sydney but when accounting for amount of input virus, more 
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HuNoV growth was observed in HIE monolayers seeded with Matrigel (Fig. 4). A low 

sample size was used for Collagen IV experiments, compared to Matrigel, as we switched 

all experiments to Matrigel after observing successful growth. As such, it is possible that the 

two methods are comparable. However, we maintain our suggestion of Matrigel as a BMC 

for environmental monitoring applications because per experiment, the cost of Matrigel is 

about 30% lower than that of Collagen IV, and cost reduction is an important consideration 

to increase the feasibility of HIEs for regular monitoring applications of HuNoV.

HuNoV Infection Inoculum Variables

Multiple research groups have determined that higher input viral titer leads to more 

successful growth of HuNoV in HIEs and we confirm these findings (Costantini et al., 

2018; Ettayebi et al., 2021). Our work showed that the minimum HuNoV GII.4 Sydney dose 

required to measure growth in HIEs is 1.4 × 103 GE/well (Figs. 5 and 6), consistent with the 

previous reports (Costantini et al., 2018).

The first HuNoV inoculum variable we studied was processing of HuNoV stool prior 

to infection in HIEs. Currently, no variability in processing method for HuNoV stool is 

observed in the literature—all studies report the use of 10% stool filtered through either 

a 0.22 μm or a 0.45 μm filter, with some reporting the use of successive filtration where 

the stool is passed through increasingly smaller filters (Alvarado et al., 2018; Chan et al., 

2019; Costantini et al., 2018; Ettayebi et al., 2016, 2021; Lin et al., 2020; Randazzo et al., 

2020; Zou et al., 2019). This work did not employ successive filtration as it can potentially 

reduce viral titer due to additional viral binding during each filtration step and we found 

that HuNoV GII.4 Sydney stool processed through a 0.45 μm filter replicated favorably in 

the HIE system. Our interest in HuNoV stool suspension processing was driven by data that 

indicate more highly processed samples, with less organic load, are desirable for disinfection 

studies (Dunkin et al., 2018). As disinfection studies are an important application of the 

HIE culture system, it was important to test alternative methods for processing HuNoV 

stool samples (Costantini et al., 2018). A reduction in organic load in viral inoculum has 

an important effect on disinfection kinetics and allows for a more accurate measure of both 

disinfectant residual and true efficacy of the disinfectant on HuNoV (Dunkin et al., 2017b; 

Shin & Sobsey, 2008). Additionally, HuNoV recovered from the environment is likely to 

be very low titer which necessitates concentration methods (Grondahl-Rosado et al., 2014; 

Leone et al., 2018; Ronnqvist et al., 2013). However, historical efforts to cultivate HuNoV 

indicated that higher purity samples may actually resist growth due to the absence of 

necessary components present in stool (Duizer et al., 2004). Our results show that this is not 

the case and that high-purity HuNoV GII.4 Sydney samples processed with a combination of 

Vertrel XF, additional filtration, and/or sucrose cushion ultracentrifugation do not replicate 

differently in HIEs.

We were also interested in the volume of HuNoV GII.4 Sydney stool suspension that was 

used to inoculate HIE monolayers. Previous HuNoV HIE cell culture work consistently used 

100 μL of infection volume or did not report this variable at all (Alvarado et al., 2018; Chan 

et al., 2019; Costantini et al., 2018; Davis et al., 2020; Ettayebi et al., 2016; Haga et al., 

2020; Koromyslova et al., 2019; Randazzo et al., 2020; Zou et al., 2019). Environmental 
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samples are frequently low titer and the ability to test higher volumes in HIE culture may 

have value in improving detection of these types of samples (Grondahl-Rosado et al., 2014; 

Ronnqvist et al., 2013; Stals et al., 2012). We tested infection volumes of 200 μL, 250 

μL, and 300 μL (maximum volume of well) and found a slight decrease in detection of 

infectious HuNoV when using 200 μL, but no association for the other volumes (Fig. 6). It is 

important to note that statistical measures for volume are likely subject to errors with small 

sample sizes in higher volume categories, compared to baseline 100 μL tests. The 300 μL 

infection experiments had a higher rate of detection (75%) of infectious HuNoV compared 

to 100 μL experiments (60%). Volume analyses were limited by small sample sizes, these 

data, however, indicate that any of the tested volumes may be appropriate for HIE infection. 

We suggest the use of a higher infection volume (250 μL) for environmental monitoring 

because the ability to test larger sample volumes can allow for improved detection in low 

titer samples. We do not suggest the use of 300 μL as this is close to the maximum capacity 

of wells and could lead to spills, sample loss, or contamination.

Data Processing Variables

Finally, we investigated how different data processing decisions impact results from growing 

HuNoV GII.4 Sydney in HIEs. The first of these decisions was the method used to replace 

data points that were below the RT-qPCR assay LOD. Environmental monitoring is likely to 

produce many values that fall below the LOD of the RT-qPCR assay due to low viral titer 

in the environment (Boxman et al., 2011; Grondahl-Rosado et al., 2014; Leone et al., 2018; 

Ronnqvist et al., 2013). Previous literature has indicated that the choice of LOD handling 

can significantly impact outcomes, but no consensus on the most appropriate method exists 

in the literature (Canales et al., 2018; Sano et al., 2016). We chose to investigate methods 

that replaced below LOD values uniformly, either with the LOD value, half the LOD value, 

or with zero, making the sample negative (“dropped”). Dropped analysis considered samples 

with any below LOD values, including 72 hpi readings, to be negative. The dropped analysis 

was performed because much of the current literature does not specify LOD handling, and it 

is possible that dropping values below the LOD method was employed in prior research. We 

did not investigate any methods for predicting below LOD values with a model as this may 

be too computationally intense for regular monitoring applications (Canales et al., 2018). 

Based on our results, we do not suggest dropping below LOD values as this can lead to a 

significant underestimation of infectious HuNoV. However, the difference between using the 

LOD value versus half the LOD is less clear and resulted in similar measures of HuNoV. 

This relationship warrants further investigation and until stronger rationale is available, we 

suggest explicitly stating the LOD replacement method in the Methods when using HIEs for 

HuNoV detection and analysis.

The second data handling decision that we investigated was the choice of cutoff for fold 

increase in HuNoV GII.4 Sydney GE between 1 and 72 hpi to determine if a sample 

contained infectious HuNoV. Fold cutoff values vary in the literature from greater than or 

equal to 1 up to 10, with some studies not reporting a cutoff at all and presumably including 

all samples with a positive fold increase (Chan et al., 2019; Costantini et al., 2018; Davis 

et al., 2020). For most of this work, we chose a positive fold cutoff of greater than or 

equal to five as this was the middle of previously reported values. We found that the choice 
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of fold cutoff did not lead to statistical differences in the percent of samples identified as 

positive for HuNoV (Fig. 7). However, final percent positive samples ranged by 8% between 

the lowest cutoff, ≥ 1, and the highest cutoff, ≥ 10. This difference could be significant in 

monitoring scenarios as high cutoff values could miss up to 8% of true positives, while low 

cutoff values could lead to more false positives.

To examine how differences in fold cutoff may affect data interpretation, we analyzed how 

different cutoff values impacted the relationship between fold increase for infectious HuNoV 

GII.4 Sydney positive samples and the amount of input virus, as this association is well 

documented in the literature (Costantini et al., 2018; Ettayebi et al., 2021). We found that 

for all three values of fold cutoff, there was a statistically significant positive association 

between viral input titer and measured fold increase. This indicates that differing fold cutoffs 

may affect qualitative measures of infectious HuNoV, but likely do not alter measured 

associations between variables. For environmental monitoring applications of the HIE 

system, the lowest fold cutoff will result in data that are the most protective of human health, 

but may lead to the decision to dedicate limited resources to addressing what ultimately may 

be false-positive measures of infectious HuNoV. Due to this existing uncertainty, reporting 

of data with multiple fold cutoffs remains ideal to account for potential false positives and 

negatives.

This work addressed multiple methodological challenges in growing HuNoV GII.4 Sydney 

using an HIEs approach, with specific attention towards applying the method to growing 

HuNoV recovered from the environment. Due to methodological challenges of the HIE 

system, only HuNoV GII.4 Sydney was tested in depth and future research should aim 

to examine other HuNoV strains. Accurate measurement of infectious HuNoV in the 

environment, including food, water, and fomites, is a crucial first step in improving risk 

assessments for HuNoV infections in various settings. Additionally, these methodological 

refinements also improve the use of the HIE system for growing HuNoV samples that 

have been subject to inactivation or disinfection methods. Recommendations from this work 

(Table 3) serve as a foundation for future application of the HIE system to measuring 

infectious HuNoV recovered from the environment. These recommendations can guide 

future studies and form a blueprint for continued improvement of the HuNoV HIE cell 

culture method.
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Fig. 1. 
Method for growing human norovirus in human intestinal enteroids. Created with BioRender
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Fig. 2. 
Human norovirus growth in human intestinal enteroids for two virus strains. Human 

norovirus (HuNoV) growth as measured by fold increase in HuNoV genome equivalents 

(GE) between 1 and 72 h post infection (hpi) in human intestinal enteroids (HIEs) for two 

virus strains: GII.4 Sydney (N = 18) and GII.4–16 Recombinant (N = 10). Dashed line 

indicates positive cutoff of fivefold; assay limit of detection (LOD) was 886 GE/well
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Fig. 3. 
Effect of human intestinal enteroid age on human norovirus growth using different growth 

measures. Human norovirus (HuNoV) growth as measured by fold increase in HuNoV 

genome equivalents (GE) between 1 and 72 h post infection (hpi) in different ages of human 

intestinal enteroids (HIEs). Dashed line indicates positive cutoff of fivefold; assay limit of 

detection (LOD) was 886 GE/well. Panel A represents HIE age as passage number ranging 

from 20 to 29 (N = 1), 30–39 (N = 23), 40–49 (N = 35), and 50–59 (N = 6). Panel B 

represents HIE as days of continuous growth ranging from 0 to 49 (N = 6), 50–99 (N = 21), 

100–149 (N = 17), and 150–199 (N = 20). Panel C represents HIE as the number of days 

cells were archived in liquid nitrogen and ranged from 0 to 99 (N = 21), 200–299 (N = 2), 

and 300–399 (N = 8)
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Fig. 4. 
Human norovirus growth in human intestinal enteroid monolayers seeded with two different 

basement membrane compounds. Human norovirus (HuNoV) growth as measured by fold 

increase in HuNoV genome equivalents (GE) between 1 and 72 h post infection (hpi) 

in human intestinal enteroid (HIEs) monolayers for two basement membrane compounds: 

Corning Matrigel (N = 75) and Collagen IV (N = 7). Dashed line indicates positive cutoff of 

fivefold; assay limit of detection (LOD) was 886 GE/well
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Fig. 5. 
Relationship between initial dose of human norovirus and resulting growth in human 

intestinal enteroids for four viral inoculum processing methods. Inoculum of human 

norovirus (HuNoV) added to human intestinal enteroids (HIEs) and resulting HuNoV 

growth as measured by fold increase in HuNoV genome equivalents (GE) between 1 

and 72 h post infection (hpi) for four viral inoculum processing methods. Gray points 

indicate baseline experiments. Dashed line indicates positive cutoff of fivefold; assay limit 

of detection (LOD) was 886 GE/well
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Fig. 6. 
Relationship between initial dose of human norovirus and resulting growth in human 

intestinal enteroids for four input volumes of viral inoculum. Inoculum of human norovirus 

(HuNoV) added to human intestinal enteroids (HIEs) and resulting HuNoV growth as 

measured by fold increase in HuNoV genome equivalents (GE) between 1 and 72 h 

post infection (hpi) for four volumes of viral inoculum. Gray points indicate baseline 

experiments. Dashed line indicates positive cutoff of fivefold; assay limit of detection (LOD) 

was 886 GE/well
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Fig. 7. 
Effect of value used to replace data below the limit of detection for human norovirus growth 

in human intestinal enteroids. Human norovirus (HuNoV) growth as measured by fold 

increase in HuNoV genome equivalents (GE) between 1 and 72 h post infection (hpi) in 

human intestinal enteroid (HIEs) monolayers for three methods of replacing below limit of 

detection (LOD) values—replacement with the LOD value (N = 70), replacement with half 

of the LOD (N = 71), and dropping values below the LOD (N = 38). Dashed line indicates 

positive cutoff of fivefold; assay limit of detection (LOD) was 886 GE/ell
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Fig. 8. 
Effect of varying the fold cutoff of HuNoV genome equivalents between 1 and 72 h 

post infection for identifying human intestinal enteroid experiments that were positive 

for infectious human norovirus. Number of experiments that were considered positive for 

infectious human norovirus (HuNoV) in human intestinal enteroids (HIEs) for three different 

fold cutoffs—≥ 1, ≥ 5 (lightened bar denotes baseline experiments), and ≥ 10. Proportion of 

experiments positive for infectious HuNoV was not significant across the three groups (p = 

0.3). Below LOD values were replaced with the LOD of 886 genome equivalents/well
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